the future future of force, work, and energy.

4.5.2 Relativistic Force, Work, Kinetic Energy

All these concepts are defined by analogy with their corresponding Newtonian versions. Thus relativistic force is defined as

$$\mathbf{F} = \frac{d\mathbf{p}}{dt} \tag{4.69}$$

a definition which reduces to the usual Newtonian form at low velocities. This force will do work on a particle, and the *relativistic work* done by \mathbf{F} during a small displacement $d\mathbf{r}$ is, once again defined by analogy as

$$dW = \mathbf{F} \cdot d\mathbf{r} \tag{4.70}$$

The rate at which F does work is then

$$P = \mathbf{F} \cdot \mathbf{u} \tag{4.71}$$

and we can introduce the notion of relativistic kinetic energy by viewing the work done by **F** as contributing towards the kinetic energy of the particle i.e.

$$P = \frac{dT}{dt} = \mathbf{F} \cdot \mathbf{u} \tag{4.72}$$

where T is the *relativistic kinetic energy* of the particle. We can write this last equation as

$$\frac{dT}{dt} = \mathbf{F} \cdot \mathbf{u} = \mathbf{u} \cdot \frac{d\mathbf{p}}{dt}$$
$$= \mathbf{u} \cdot \frac{d}{dt} \frac{m_0 \mathbf{u}}{\sqrt{1 - u^2/c^2}}$$
$$= \frac{m_0 \mathbf{u} \cdot \frac{d\mathbf{u}}{dt}}{\sqrt{1 - u^2/c^2}} + \frac{m_0 \mathbf{u} \cdot \mathbf{u} u \frac{du}{dt}}{c^2 \sqrt{1 - u^2/c^2}}$$

But

$$\mathbf{u} \cdot \frac{d\mathbf{u}}{dt} = u \frac{du}{dt} \tag{4.73}$$

and hence

$$\frac{dT}{dt} = \left[\frac{m_0}{\sqrt{1 - u^2/c^2}} + \frac{m_0 u^2/c^2}{\sqrt{(1 - u^2/c^2)^3}}\right] u \frac{du}{dt}$$
$$= \frac{m_0}{\sqrt{(1 - u^2/c^2)^3}} u \frac{du}{dt}$$

so that we end up with

$$\frac{dT}{dt} = \frac{d}{dt} \left[\frac{m_0 c^2}{\sqrt{1 - u^2/c^2}} \right].$$
(4.74)

Integrating with respect to t gives

$$T = \frac{m_0 c^2}{\sqrt{1 - u^2/c^2}} + \text{ constant.}$$
(4.75)

By requiring that T = 0 for u = 0, we find that

$$T = \frac{m_0 c^2}{\sqrt{1 - u^2/c^2}} - m_0 c^2. \tag{4.76}$$

Interestingly enough, if we suppose that $u \ll c$, we find that, by the binomial approximation⁶

$$\frac{1}{\sqrt{1-u^2/c^2}} = (1-u^2/c^2)^{-\frac{1}{2}} \approx 1 + \frac{u^2}{2c^2}$$
(4.77)

so that

$$T \approx m_0 c^2 (1 + u^2/c^2) - m_0 c^2 \approx \frac{1}{2} m_0 c^2$$
(4.78)

which, as should be the case, is the classical Newtonian expression for the kinetic energy of a particle of mass moving with a velocity \mathbf{u} .

[&]quot;The binomial approximation is $(1 + x)^n \approx 1 + nx$ if $x \ll 1$.